Искусственный интеллект  (ИИ, artificial intelligence, AI) - это наука создания интеллектуальных технологий и компьютерных программ.

Искусственный интеллект тесно связан с задачей понять человеческий интеллект с помощью компьютерных технологий. На данный момент нельзя точно сказать, какие вычислительные методы можно называть интеллектуальными. Одни механизмы интеллекта открыты для понимания, остальные нет. На данный момент в программах используются методы, не встречающиеся у людей.

Искусственный интеллект имеет научное направление, которое изучает решение задач интеллектуальной деятельности человека. Искусственный интеллект направлен на выполнение творческих задач в области, знания о которой хранится в интеллектуальной системе программы - базе знаний.

С этими знаниями работает механизм программы - решатель задач. Затем человек получает представление о результате работы программы через интеллектуальный интерфейс. Результатом программы искусственного интеллекта, является воссоздание интеллектуального рассуждения или разумного действия.

Одним из главных свойств искусственного интеллекта является способность самообучаться. В первую очередь, это эвристическое обучение -  непрерывное обучение программы, формирование процесса обучения и собственных целей, анализ и осознание своего обучения.

Научное направление изучающее искусственный интеллект начало зарождаться еще давно:

  • философы думали о познании внутреннего мира человека
  • психологи изучали мышление человека
  • математики занимались расчетами

Вскоре, были созданы первые компьютеры, которые позволили выполнять вычисления обгоняя по скорости человека. Тогда ученые стали задавать вопрос: где граница возможностей компьютеров и могут они достигнуть уровня человека?

Алан Тьюринг - английский ученый, пионер вычислительной техники, написал статью «Может ли машина мыслить?», где описал метод, который поможет определить, в какой момент компьютер можно сравнить с человеком. Этот метод получил названием - тест Тьюринга.

Суть метода заключается в том, чтобы человек сначала отвечал на вопросы компьютера, затем на вопросы другого человека и при этом не зная, кто именно задал ему вопросы. Если при ответе на вопросы компьютера, человек не заподозрил, что это машина, то прохождение теста Тьюринга можно считать успешным, как и то, что компьютер является искусственным интеллектом.

Таким образом, если компьютер проявляет схожее с человеческим поведение в любых естественных ситуациях и способен поддержать диалог с человеком, то можно сказать, что это искусственный интеллект. Еще один предполагаемый метод определения является ли машина интеллектуальной, это ее способность к творчеству и возможность чувствовать.

Существует множество разных подходов к изучению и пониманию искусственного интеллекта.

Символьный подход

Символьный подход стал первым в цифровую эпоху машин. После создания языка символьных вычислений Лисп, его авторы приступили к реализации интеллекта. Символьный подход используйте слабоформализованные представления. Пока что интеллектуальную работу и связанные с творчеством задачи способен выполнять только человек. Работа компьютеров в этом направлении является предвзятой и по сути не может выполняться без участия человека.

Символьные вычисления помогли создать правила для решения задач в процессе выполнения компьютерной программы. Однако стало возможно решать только самые простые задачи, а при появлении любой сложной задачи необходимо снова подключаться человеку. Таким образом, такие системы не позволяют называть их интеллектуальными, так как их возможности не позволяют решать возникающие трудности и совершенствовать уже знающие способы решения задач для решения новых.

Логический подход

Логический подход основан на моделировании рассуждений и применением языка логического программирования. Например, язык программирования Пролог основан на наборе правил логического вывода без жестких последовательных действий для достижения результата.

Агентно-ориентированный подход

Агентно-ориентированный подход основан на методах помогающих интеллекту выживать в окружающей среде для достижения определенных результатов. Компьютер воспринимает свое окружение и воздействует на него с помощью поставленных методов.

Гибридный подход

Гибридный подход включает в себя экспертные правила, которые могут создаваться нейронными сетями, а порождающие правила с помощью статистического обучения.

Моделирование рассуждений

Существует такое направление в изучении искусственного интеллекта, как моделирование рассуждений. Данное направление включает в себя создания символьных систем, для постановки задач и их решения. Поставленная задача должна быть переведена в математическую форму. При этом у нее еще нет алгоритма для решения из-за сложности. Поэтому моделирование рассуждений содержит доказательство теорем, принятие решений, планирование, прогнозирование и т.п.

Обработка естественного языка

Еще одним важным направлением искусственного интеллекта является обработка естественного языка, на котором делается анализ и обработка текстов на понятном для человека языке. Цель этого направления - обработка естественного языка для самостоятельного приобретения знаний. Источником информации может быть текст введенный в программу или полученный из интернета.

Представление и использование знаний

Инженерия знаний - это направление получения знаний из информации, их систематизация и дальнейшее использование для решения различных задач. С помощью специальных баз знаний экспертные системы получают данные для процесса нахождения решений поставленных задач.

Машинное обучение

Одним из основных требований к искусственному интеллекту является возможность машины к самостоятельному обучению без вмешательства учителя. К машинному обучению относятся задачи по распознаванию образов: распознавание символов, текста и речи. Сюда же относится и компьютерное зрение, связанное с робототехникой.

Биологическое моделирование ИИ

Существует такое направление, как квазибиологическая парадигма, которое иначе называется Биокомпьютинг. Данное направление в искусственном интеллекте изучает разработку компьютеров и технологий с использованием живых организмов и биологических компонентов - биокомпьютеров.

Робототехника

Область робототехники тесно связана с искусственным интеллектом. Свойства искусственного интеллекта также необходимы роботам для выполнения множества различных задач. Например, для навигации и определения своего местоположения, изучения предметов и планирование своего перемещения.

Области применения искусственного интеллекта

Искусственный интеллект создается с целью решать задачи из различных областей:

  • Интеллектуальные системы для образования и отдыха.
  • Синтез и распознавание текста и человеческой речи используется в системах обслуживания клиентов.
  • Системы распознавания образов используются используют в системах безопасности, при оптическом и акустическом распознавании, медицинской диагностике, системах определения целей.
  • В компьютерных играх применяются системы ИИ для расчета игровой стратегии, имитации поведений персонажей, нахождения пути в  пространстве.
  • Системы алгоритмической торговли и принятия решений.
  • Финансовые системы для консультации и управления финансами.
  • Роботы используемые в промышленности для решения сложных рутинных задач: роботы для ухода за больными, роботы консультанты, а также занимающиеся деятельностью опасной для жизни человека: роботы спасатели, роботы минеры.
  • Управление человеческими ресурсами и рекрутинг, просмотр и ранжирование кандидатов, прогнозирование успеха сотрудников.
  • Системы распознавания и фильтрации спама в электронной почте.

Это далеко не все области, где можно применить искусственный интеллект.

Сейчас создание искусственного интеллекта является одной из важных задач человека. Однако пока нет единой точки зрения на то, что можно считать интеллектом, а что нельзя. Многие вопросы вызывают споры и сомнения. Возможно ли создание интеллектуального разума, который будет понимать и решать проблемы людей? Разум, не лишенный эмоций и со способностями присущими живому организму. Пока не настало время, когда мы это увидим.